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QUASISTATIONARY SEDIMENTATION WITH ADSORPTION

UDC 532.5V. V. Shelukhin

Models for the sedimentation of particles suspended in solution are proposed that take into account
mass transfer between the liquid fraction of the solution and the particles. The structure and velocity
of the concentration wave describing the upward extension of the zone with a high concentration of
the solid phase are studied using a kinematic model with the Froude number as a small parameter.
It is established that the concentration-wave velocity becomes lower if the sorption parameter is set
equal to zero, i.e., if the sorption properties of the suspended particles are ignored.
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1. Mathematical Models of Sedimentation. Sedimentation — the process of separation of various
mixtures into components under gravity — is frequently observed in both nature and technical facilities. In geology,
the process of rock formation is studied from the standpoints of sedimentation. Sedimentation has been widely
employed in ore mining and chemical industry.

The foundations for the mathematical modeling of sedimentation were laid by Stokes (1851) in his classical
paper on the law of fall of a single sphere in a fluid [1]. Since then, this law have been widely used to solve many
scientific and practical problems.

An important contribution to research of concentrated suspension solutions was a paper by Kynch (1952), in
which he suggested that process of sedimentation of a solid phase be described in terms of concentration waves [2].
A zone with a high concentration of the solid phase is first formed at the bottom of a sedimentation chamber,
and then this zone is extended upward — this is a concentration wave. Although the paper was based on the
assumption that the inertia forces are negligibly small, the conclusions of this work have been confirmed by a
number of experiments. The subsequent development of this theory is summed up in [3].

The present paper considers sedimentation models that take into account the sorption properties of the solid
particles suspended in solutions. The need for such models is dictated by a number of applied problems of ecology
and chemistry. In addition, there is convincing evidence that adsorption indeed influences sedimentation. Thus,
experiments have shown that the sedimentation rate is increased by the addition of surface-active agents, such as
cyanides and other electrolytes, to solutions.

Solution and the solid particles suspended in it are treated as two independent phases [4]. The mass and
momentum balance equations are formulated with allowance for mass transfer between the phases using a number
of assumptions.

The main assumption refers to the role of inertia forces in the total balance of forces. In the case of slow flows
there is a small parameter — the Froude number. It is used to perform an ordinary conversion to quasistationary
equations ignoring inertia force, as in the Kynch approach.

Another important assumption concerns the adsorption kinetics, which characterizes the mass balance of the
active-impurity concentration on the surface of the suspended particles and in the solution. The Langmuir kinetic
equation is used as the basis [1].

In addition, it is assumed that the liquid- and solid-phase pressures are identical and the volume compression
of horizontal layers of suspended particles depends only on their volume concentration.
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As a result, the one-dimensional two-phase sedimentation model with adsorption reduces to the following
equations:

∂ρfϕf

∂t
+

∂ρfϕfvf

∂x
= −r,

∂ρsϕs

∂t
+

∂ρsϕsvs

∂x
= r,

∂ρfϕfcf

∂t
+

∂ρfϕfcfvf

∂x
= −r, r ≡ ∂ρsϕscs

∂t
+

∂ρsϕscsvs

∂x
,

∂ρsϕscs

∂t
= k1cfρsϕs(c∞s − cs)− k2ρsϕscs, ϕf + ϕs = 1,

(1)

∂

∂x
p = −gρf +

α(ϕs)u
ϕf

,
∂

∂x
σe(ϕs) = −g(ρs − ρf )ϕs −

α(ϕs)u
ϕf

, u ≡ vs − vf .

Here ρ is the phase density, v is the phase velocity, u = vs − vf is the relative velocity of the phases, α is the
interfacial friction factor, ϕ is the phase volume concentration, g is the acceleration of gravity, c is the impurity
mass concentration in the phase, p is the pressure, and σe is the volume compression of the horizontal layers of
suspended particles. The subscripts f and s denote the liquid and solid phases, respectively. The x axis is directed
vertically upward opposite to the gravity. Naturally, the mass transfer between the phases should be accompanied
by a variation in the phase densities. However, for many applied problems, the assumption of incompressibility of
the phases is justified, and in the present work, the densities ρf and ρs are considered constant.

Model (1) contains three kinetic constants k1, k2, and c∞s and two empirical functions α(ϕs) and σe(ϕs),
which prevents its application. Therefore, it is reasonable to simplify the model.

If a sorption (or chemisorption) process rapidly reaches a stationary regime, the Langmuir equation can
be replaced by a stationary isotherm, from which by linearization it is possible to obtain the relation ϕa = Qϕs

between the volume concentration of the solid phase ϕs and the volume concentration of the adsorbed surfactant
impurity ϕa, where the adsorption parameter Q is determined by the constants k1, k2, and c∞s and by a certain
average value c∗f of the concentration cf . Conversion to the isotherm ϕa = Qϕs is justified if the ratio ϕa/ϕs is not
negligibly small.

After introducing the volume concentration of the unfixed liquid phase ϕ̃f and reassessing the role of the
mass generation rate r, from Eqs. (1) we derive the sedimentation model with equilibrium adsorption:

∂ρf ϕ̃f

∂t
+

∂ρf ϕ̃fvf

∂x
= −∂ρfϕa

∂t
,

∂ρsϕs

∂t
+

∂ρsϕsvs

∂x
=

∂ρfϕa

∂t
,

∂

∂x
σe(θ) = −g(ρs − ρf )θ − α(θ)u

ϕ̃f
, u ≡ vs − vf , (2)

ϕ̃f + ϕs + ϕa = 1, ϕa = Qϕs, θ ≡ ϕs + ϕa.

When adsorption is ignored (Q = 0), Eqs. (2) coincide with the well-known equations [3]. In some cases,
system (2) can be reduced to one degenerate parabolic equation for the function θ:

∂θ

∂t
+

∂Fb(θ, Q)
∂x

=
∂

∂x

(
a(θ, Q)

∂θ

∂x

)
. (3)

In particular, if at the sedimentation-chamber bottom there is no removal of the settled particles, the sedimentation
is described by this equation.

Equation (3) becomes the scalar conservation law

∂θ

∂t
+

∂Fb(θ, Q)
∂x

= 0, (4)

if the action of the horizontal layers of the solid phase on each other is insignificant, i.e., if it is possible to set
σ′e(θ) ≡ 0.

Most of the present paper deals with an analysis of Eq. (4). Using this equation, it is possible to describe
the structure of the wave concentration and to calculate its velocity. It is proved analytically and confirmed by
numerical calculations that accounting for adsorption leads to an increase in the wave-concentration velocity.
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2. Sedimentation with Nonequilibrium Adsorption. In two-phase theory, the suspended particles
and solution are considered as two material continua overlaid on each other. The mass transfer between the solid
and liquid phases is described by the equations [5]

∂

∂t
(ρfϕf ) + div (vfρfϕf ) = −r; (5)

∂

∂t
(ρsϕs) + div (vsρsϕs) = r. (6)

Here v is the phase velocity and r is the mass generation rate:

r ≡ ∂a

∂t
+ div (vsa)

(a is the mass of the adsorbed impurity per unit volume). Let cs be the mass concentration of the adsorbed impurity
in the solid phase. Then,

a = ρsϕscs.

The variation in the impurity mass in the liquid phase is described by the equation [6]

∂

∂t
(ρfϕfcf ) + div (vfρfϕfcf ) = −r. (7)

To determine the relation between the concentrations cs and cf , we use the Langmuir kinetic adsorption equation [1]

∂a

∂t
= k1cf (ρsϕsc

∞
s − a)− k2a, c∞s =

NµS

ρs
. (8)

In formula (8), the constants have the following meaning: k1 and k2 are the sorption and desorption rate parameters,
S is the surface area of the solid phase per unit volume of the solid phase, µ is the mass of one impurity molecule,
N is the number of adsorption centers per unit area, and c∞s is the limiting possible impurity concentration in the
solid phase. The constant τ = 1/k2 is the residence time (in seconds) of a molecule at the adsorption center. It is
calculated by the formula τ = τ0 exp (E/(kT )), where k is Boltzmann’s constant, E is the energy of adhesion to the
solid wall, T is the temperature, and τ0 ≈ 10−13 is a factor.

If the third phase is absent, the volume concentrations ϕs and ϕf should satisfy the equality

ϕs + ϕf = 1. (9)

In the theory of a two-phase medium, the momentum equations are written as
∂

∂t
(ρfϕfvf ) + div (ρfϕfvf ⊗ vf ) = div σf + ρfϕfg −m,

∂

∂t
(ρsϕsvs) + div (ρsϕsvs ⊗ vs) = div σs + ρsϕsg + m.

(10)

Here g is the free-fall acceleration, m is the interfacial resistance vector (m = −αu − β∇ϕf ), and u = vs − vf .
The symbol a⊗ b denotes the tensor product of the vectors a and b, so that (a⊗ b)ij = aibj . We recall that if σ is
a matrix, div σ is a vector with the components (div σ)i = ∂σij/∂xj .

System (5)–(10) is a sedimentation model with adsorption. Within the framework of this model, the entire
diversity of solutions is determined by the parameters k1, k2, α, β, and c∞s and the stress tensors σf and σs. For
the tensors σf and σs, the determining relations will be written below.

Subsequently, we restrict ourselves to the case of one-dimensional motion along the vertical axis x. We
introduce the following nondimensional quantities:

x′ =
x

L
, t′ =

t

τ
, v′s =

vs

v∞
, v′f =

vf

v∞
, u′ =

u

v∞
, σ′f =

σf

ρfgL
,

σ′s =
σs

ρsgL
,

∂

∂t′
= τ

∂

∂t
,

∂

∂x′
= L

∂

∂x
.

Here L is the characteristic height of the solution column and v∞ is the characteristic sedimentation rate of an
individual suspension volume. The characteristic time τ is calculated by the formula τ = L/v∞.
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We write Eqs. (5)–(10) in dimensionless variables using the Froude number Fr = v∞/
√

gL:

∂ρfϕf

∂t′
+

∂ρfϕfv′f
∂x′

= −∂ρsϕscs

∂t′
− ∂ρsϕscsv

′
s

∂x′
,

∂ρsϕs

∂t′
+

∂ρsϕsv
′
s

∂x′
=

∂ρsϕscs

∂t′
+

∂ρsϕscsv
′
s

∂x′
,

∂ρfϕfcf

∂t′
+

∂ρfϕfcfv′f
∂x′

= −∂ρsϕscs

∂t′
− ∂ρsϕscsv

′
s

∂x′
,

∂ρsϕscs

∂t′
= k1cfρsϕs(c∞s − cs)− k2ρsϕscs,

Fr2
(∂ϕfv′f

∂t′
+

∂ϕf (v′f )2

∂x′

)
=

∂

∂x′
σ′f − gρfϕf +

αv∞u′

gρf
+

β

Lgρf

∂

∂x′
ϕf ,

Fr2
(∂ϕsv

′
s

∂t′
+

∂ϕs(v′s)
2

∂x′

)
=

∂

∂x′
σ′s − gρsϕs −

αv∞u′

gρs
− β

Lgρs

∂

∂x′
ϕf .

Taking into account that the Froude number is small, we arrive at the quasistationary equations of motion, which
in dimensional variables are written as

∂ρfϕf

∂t
+

∂ρfϕfvf

∂x
= −r,

∂ρsϕs

∂t
+

∂ρsϕsvs

∂x
= r; (11)

∂ρfϕfcf

∂t
+

∂ρfϕfcfvf

∂x
= −r, r ≡ ∂ρsϕscs

∂t
+

∂ρsϕscsvs

∂x
; (12)

∂ρsϕscs

∂t
= k1cfρsϕs(c∞s − cs)− k2ρsϕscs;

0 =
∂

∂x
σf − ρfgϕf + αu + β

∂

∂x
ϕf , 0 =

∂

∂x
σs − ρsgϕs − αu− β

∂

∂x
ϕf . (13)

The determining relations for the stresses σf and σs are as follows:

σf = −ϕfp, σs = −ϕsp− σe, σe = σe(ϕs). (14)

These relations coincide with the well-known formulas for the case of no impurity [3] and imply that all phases are
acted upon by identical pressure p and that in the solid phase there are additional stresses σe due to the action of
horizontal layers of the solid phase on each other. These stresses are especially pronounced at the sedimentation-
chamber bottom, where the liquid phase is actually filtered through the “swollen” solid phase. According to this
concept, the quantity p is sometimes called pore pressure. The quantity σe characterizes the volume compression of
the solid sorbent in the solution, and σe as a function of ϕs should be determined experimentally. For some types
of solution, the function σe(ϕs) is nonnegative and there is a critical value ϕ∗s for which the following conditions [3]
are satisfied:

σ′e(ϕs) = 0 at ϕs ≤ ϕ∗s, σ′e(ϕs) > 0 at ϕs ≥ ϕ∗s. (15)

When all velocities are equal to zero, the first equation of system (13), in view of equalities (14), reduces to
the equation

0 = ϕf (β − p)− ϕf (px + ρfg).

However, in the state of rest, px = −ρfg; therefore, in this state β = p. As a hypothesis, we assume that the
equality β = p is satisfied always and α is a specified function of ϕs.

In view of this hypothesis, system (13) can be written as

∂

∂x
p = −gρf +

α(ϕs)u
ϕf

,
∂

∂x
σe(ϕs) = −g(ρs − ρf )ϕs −

α(ϕs)u
ϕf

, u ≡ vs − vf . (16)
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Thus, we obtain the quasistationary model (1), which describes sedimentation in terms of seven unknown functions:
ϕf , ϕs, cf , cs vf , vs, and p.

3. Equilibrium Adsorption. The adsorbed mass a is attached to the solid phase, carrying with itself a
certain volume of the liquid phase. The volume concentration of the fixed liquid phase ϕa is determined from the
equality

ρsϕscs ≡ a = ρfϕa. (17)

The volume concentration of the free liquid phase ϕ̃f is equal to ϕf −ϕa. Bearing in mind that mass transfer occurs
between the free and fixed liquid phases, we reformulate the mass balance laws (11) and (12):

∂ρf ϕ̃f

∂t
+

∂ρf ϕ̃fvf

∂x
= −r,

∂ρsϕs

∂t
+

∂ρsϕsvs

∂x
= r; (18)

∂ρf ϕ̃fcf

∂t
+

∂ρf ϕ̃fcfvf

∂x
= −r, r ≡ ∂ρfϕa

∂t
+

∂ρfϕavs

∂x
. (19)

Introducing the volume concentration of the “swollen” solid phases θ = ϕs + ϕa, we write the momentum equa-
tions (16) for the free liquid phase and the “swollen” solid phases as follows:

∂

∂x
p = −gρf +

α(θ)u
ϕ̃f

,
∂

∂x
σe(θ) = −g(ρs − ρf )θ − α(θ)u

ϕ̃f
, u ≡ vs − vf . (20)

We eliminate from consideration the variable cs and introduce the variable ϕa by means of equality (17). Then, the
Langmuir equation becomes

∂ρfϕa

∂t
= k1cf (ρsϕsc

∞
s − ρfϕa)− k2ρfϕa.

The sedimentation rate is much lower than the rate of establishment of thermodynamic equilibrium between impurity
molecules in the phases. Therefore, the Langmuir equation can be replaced by the Langmuir isotherm

ϕa =
k1ρsc

∞
s cf

ρf (k2 + k1cf )
ϕs,

which is obtained from the last equality if in it the derivative with respect to time is set equal to zero. Linearizing
the isotherm for a certain value cf = c∗f , we arrive at the equality

ϕa = Qϕs

(
Q ≡

k1ρsc
∞
s c∗f

ρf (k2 + k1c∗f )

)
.

Next, we assume that the second term is small compared to the first term in the expression for the mass
generation rate r. Assuming that r = ∂ (ρfϕa)/∂t, we obtain the sedimentation model with equilibrium adsorp-
tion (2).

We note that Eqs. (2) do not contain the functions cs, cf , and p, which are found from equality (17) and the
solutions of Eqs. (19) and (20), respectively. An advantage of model (2) is that instead of the three kinetic constants
k1, k2, and c∞s , it is now necessary to determine just one adsorption parameter Q. To calculate it, one needs to
perform a simple experiment to find the degree of reduction in the liquid-solution volume for the case where the
solid phase in the form of a dry powder is first placed in the solution and the unadsorbed part of the solution is
then poured through a filter.

4. Degenerate Parabolic Sedimentation Equation. For the average velocity

q = vsϕs + (1− γQ)vf ϕ̃f (γ = ρf/ρs)

equalities (18) imply that ∂q/∂x = 0, i.e., q depends only on time.
We introduce the function

f(θ) = −g(ρs − ρf )θ2(1− θ)2/α(θ).

The phase velocities can be expressed in terms of q and u as follows:

vf =
q − ϕsu

(1− γQ)ϕ̃f + ϕs
, vs =

q + (1− γQ)ϕfu

(1− γQ)ϕ̃f + ϕs
, ϕs =

θ

1 + Q
, ϕ̃f = 1− θ.
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Eliminating the function u by means of the second formula in (20), from the second equation of system (18), we
obtain the equation for θ

∂θ

∂t
+

∂F (θ, q,Q)
∂x

=
∂

∂x

(
a(θ, Q)

∂θ

∂x

)
, (21)

where

F (θ, q,Q) =
(1 + Q)f(θ)

r(θ, Q)
+

1 + Q

(1− γQ)
qθ

r(θ, Q)
, a(θ, Q) = − (1 + Q)f(θ)σ′e(θ)

g(ρs − ρf )θr(θ, Q)
,

r(θ, Q) := θ + ν(Q)(1− θ), ν(Q) := (1 + Q)(1− γQ).

Equation (21) belongs to the type of degenerate parabolic equations if the function σe(θ) obeys conditions (15) in
which ϕs is replaced by θ and ϕ∗s by a certain number θ∗. As is obvious, Eq. (21) is determined by the kinetic
constant Q and two empirical functions α(θ) and σe(θ), where α is the interfacial friction factor and σe characterizes
the compression of horizontal layers of the solid phase. For Q = 0, Eq. (21) becomes the well-known equation of
sedimentation without adsorption [3].

An analysis of Eq. (21) is based on the empirical representation of the function f(θ) used to describe
sedimentation of a number of suspensions [3]:

f(θ) = −a0θ(θ∞ − θ)n, a0 = const > 0, 0 < θ∞ ≤ 1, n > 0. (22)

Here θ∞ is the limiting possible concentration of the settled solid particles. In particular, for some suspensions, the
constants in formula (22) have the following values [3]: a0 = 6.05 · 10−4 m/sec, n = 12.59, and θ∞ = 0.65. For such
values, the function f(θ) exhibits the following properties:

f(θ) has one point of inflection, f(0) = f(θ∞) = 0, and f(θ) < 0 for 0 < θ < θ∞. (23)

A plot of such a function is given in Fig. 1.
Below, Eq. (21) is studied under the assumption that σ′e(θ) ≡ 0, which is equivalent to ignoring the com-

pression interaction between horizontal layers of the solid phase. In this case, Eq. (21) becomes the kinematic-wave
equation [7]:

θt + F (θ, q)x = 0.

The properties of the function F (θ, q) are determined by conditions (22) and (23). We note that ν > 1 for
Q < (1− γ)/γ.

5. Sedimentation with a Closed Bottom. Under conditions where there is no removal of solid particles at
the sedimentation-chamber bottom, the average mass flux q vanishes and the model of noncompression sedimentation
reduces to the conditions

θt + Fb(θ)x = 0, θ|t=0 = θ0, θ|x=0 = θ∞, Fb =
(1 + Q)f

θ + ν(Q)(1− θ)
. (24)
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It is assumed that the initial solid-phase concentration has the same value θ0 over the entire column height and
that at the bottom a certain limiting concentration θ∞ occurs instantaneously and remains unchanged during the
entire process. Recall that the function Fb(θ) depends on the constant θ∞ [see (22)].

Let us show that for a small value of the number Q, the function Fb(θ) obeys conditions (23). It suffices to
check that the second derivative F ′′

b (θ) vanishes only at a single point in the interval (0, θ∞). We have

F ′′
b (θ) = (ν − 1)2ar−3(θ∞ − θ)n−2p(θ, Q), r(θ, Q) := θ + ν(1− θ), a = a0(1 + Q),

where p(θ, Q) is a third-degree polynomial in the variable θ:

p = 2(n + 1)(θ − θ′∞)(θ − θ∞)(θ − 1/δ)− 2θ(θ − θ∞)2 − n(n + 1)(θ − 2θ′∞)(θ − 1/δ)2. (25)

Here we used the notation θ′∞ = θ∞/(n + 1) and δ = (ν − 1)/ν.
Let n > 2. The polynomial (ν(Q)− 1)2p(θ, Q) for Q = 0 has one root θ = 2θ′∞. By virtue of continuity, in

the interval (ν(Q)− 1)2p(θ, Q) the polynomial (0, θ∞) also has one root. Thus, for small values of Q, the function
F ′′

b (θ) vanishes in the interval (0, θ∞) only at one point. Let us find the range of the parameter Q that a priori
ensures that property (23) is satisfied for the function Fb(θ).

Statement 1. If
ν(Q)− 1

ν(Q)
≡ δ(Q) < 2n

/(
θ∞ +

√
θ2
∞ +

2n2(n− 1)
θ∞(n + 1)

)
≡ δ∗,

the function Fb(θ) satisfies conditions (23).
Proof. The polynomial p can be written as

p = −n(n− 1)(θ3 − α2θ
2 + α1θ − α0),

where
α2 =

2(n + 1)
δn

, α1 =
n + 1

δ2(n− 1)
+

2(n− 2)θ∞
δn(n− 1)

, α0 =
2θ∞(n + 1)
δn(n− 1)

(n

δ
− θ∞

)
.

Let the condition α0 > 1 be satisfied. We denote the roots of the equation p(θ) = 0 by θ̄i and assume that
θ̄1 ≤ θ̄2 ≤ θ̄3.

Representation (25) implies the inequalities p(2θ′∞) > 0 and p(θ∞) < 0. Therefore, one of the roots is
positive and lies in the interval (2θ′∞, θ∞).

The condition θ̄1θ̄2θ̄3 = α0 > 1 implies that all roots are positive or that exactly two negative roots exist.
In the latter case, it is clear that (2θ′∞, θ∞) 3 θ̄3 is a single point in the interval (0, θ∞) at which the function p

vanishes.
Let now all roots be positive. Since α0 > 1, we have θ̄3 > 1. Representation (25) implies that p(θ) < 0 for

θ∞ < θ < 1/δ. Therefore, θ̄3 ≥ 1/δ > 1. There is an alternative: max {θ̄1, θ̄2} < θ∞ or max {θ̄1, θ̄2} > 1/δ. In the
first case, p(θ) > 0 for min {θ̄1, θ̄2} < θ < max {θ̄1, θ̄2}. In the second case, p(θ) →∞ as θ → −∞ and p(θ) → −∞
as θ → ∞. Therefore, the function p(θ) should have four different points at which p′(θ) = 0, which is impossible
because p(θ) is a third-degree polynomial.

Thus, max{θ̄1, θ̄2} > 1. Hence, (2θ′∞, θ∞) 3 min{θ̄1, θ̄2} = θ̄1 is the unique solution of the equation p(θ) = 0
in the interval (0, θ∞). Thus, for α0 > 1, the polynomial p has a unique root in the interval (0, θ∞).

It is easy to verify that the condition α0 > 1 is equivalent to the inequality δ < δ∗. Statement 1 is proved.
Next, it is assumed that the function Fb(θ) satisfies conditions (23). This assumption makes it possible

to describe the sedimentation dynamics and show that the discontinuity wave of the function θ(x, t), called a
concentration wave, propagates up the column.

Before characterizing the velocity σ of this wave, we shall describe the structure of the solution of problem (24)
on the plane of variables (x, t) (Fig. 2) invoking the theory of entropy solutions for the scalar conservation laws [8]
in the case where the function Fb(θ) has one point of inflection and θ0 < θ∞.

In the sector between the half-lines t = 0 and x/t = σ, the function θ takes a constant value θ0. Since the
wave propagates in the increasing direction of the variable x, the number θ0 is reasonably called the value of the
quantity θ ahead of the front. On the line x/t = σ, the function undergoes a discontinuity. The value of θa

1 behind
the front and the velocity σ are found from the Hugoniot condition

σ =
Fb(θa

1)− Fb(θ0)
θa
1 − θ0

.
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In the sector between the half-lines x/t = σ and x = 0, the function θ is constant along each half-line x/t = α = const
and increases continuously from θa

1 to θ∞ as α decreases from σ to 0. In this case, θ is found from the equality

α =
dFb

dθ
(θ(α)), θ(α) = (F ′

b)
−1(α).

Thus, the shock wave propagates up the column and is followed by a centered wave. A qualitative curve of the
concentration θ versus the height x at any fixed time t is given in Fig. 3.

The values of σ and θa
1 are found uniquely, as follows from the geometrical method of their determination.

On the plane of variables (θ, Fb), straight lines are drawn that lie above the plot of the function Fb = Fb(θ),
θ0 < θ < θ∞ pass through the point (θ0, Fb(θ0)), and among these straight lines one needs to choose the one that
has the minimum slope to the positive semiaxis t = 0. It is clear that this straight line is tangent to the plot of the
function Fb = Fb(θ) and the tangency point determines the parameters σ and θa

1 (Fig. 4):

σ = sup
θ0≤θ≤θ∞

Fb(θ)− Fb(θ0)
θ − θ0

=
Fb(θa

1)− Fb(θ0)
θa
1 − θ0

= F ′
b(θ

a
1), θ0 < θa

1 < θ∞. (26)

In the case where the solid phase is not a sorbent, the concentration wave velocity is found in a similar way:

σ0 := sup
θ0≤θ≤θ∞

f(θ)− f(θ0)
θ − θ0

=
f(θ1)− f(θ0)

θ1 − θ0
= f ′(θ1), θ0 < θ1 < θ∞.

Since
Fb(θ)− Fb(θ0)

θ − θ0
=

1 + Q

r(θ0)

(f(θ)− f(θ0)
θ − θ0

+
(ν − 1)f(θ)

r(θ)

)
, ν = 1 + O(Q),

we have

|σ − σ0| ≤ cQ.
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Thus, the effect of small adsorption on the concentration-wave velocity is insignificant. Statement 1 forbids the
occurrence of new points of inflection for the function Fb(θ) if the parameter Q varies from zero to a certain value Q∗.
To understand the importance of this property, we consider a hypothetical situation where for any small Q > 0, the
function Fb(θ) have three points of inflection and a shape similar to that in Fig. 5. In this case, the solution θ(x, t)
would be represented by two shock waves which travel over the unperturbed medium and are separated by a centered
rarefaction wave, and the second wave would also be followed by a centered rarefaction wave. For each t > 0, the
function θ = θ(x, t) would have a shape similar to that in Fig. 6.

Thus, by virtue of Statement 1, the sorption properties of the solid phase does not imply the occurrence of
new concentration waves and the sedimentation process remains one-wave.

Let us consider the effect of the sorption properties of the solid phase on the sedimentation dynamics. For
at least rather large values of the initial concentration θ0, we can show in a mathematically rigorous way that
accounting for adsorption leads to an increase in the concentration-wave velocity.

Statement 2. There exists a certain number θ∗0 dependent on Q such that σ > σ0, if θ0 ≥ θ∗0.
Proof. We introduce the function

g(θ) = f(θ)− Fb(θ) ≡ −r−1f(θ)(θ(ν − 1) + γ(1 + Q)Q).

It is clear that

g(0) = g(θ∞) = 0 and g(θ) > 0 for 0 < θ < θ∞.

From formulas (22) and (24), we obtain the value of the derivative g′(θ)

g′ = a0(ν − 1)2r−2(θ∞ − θ)n−1p,

where p is a third-degree polynomial:

p = (n + 1)(θ + γ2)(θ − θ′∞)(θ − 1/δ)− (1/δ + γ2)θ(θ − θ∞).

Here

θ′∞ = θ∞/(n + 1), δ = (ν − 1)/ν, γ1 = γQ(1 + Q), γ2 = γ1/(ν − 1).

Because

p(−∞) = −∞, p(0) > 0, p(θ∞) < 0, p(+∞) = +∞,

it follows that in the interval (0, θ∞), the equation p = 0 has a unique root θ = θ∗0 . Thus, the function g(θ) decreases
monotonically in the interval (θ∗0 , θ∞).

We assume that σ ≤ σ0. Then, for θ0 < θ < θ∞, the plot of the function Fb(θ) does not lie above the plot
of the function σ0(θ − θ0)+ Fb(θ0). This, however, is impossible since at the point θ = θ1,

σ0(θ1 − θ0) + Fb(θ0)− Fb(θ1) = g(θ1)− g(θ0) < 0.

Hence, σ > σ0, and the statement is proved.
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From (26) it follows that the equality F ′
b(θ)(θ − θ0) = Fb(θ) − Fb(θ0) is the equation to find θa

1 . With
allowance for formulas (22) and (24), it has the form

(θ − θ0)(θ∞ − θ)n(−nθ2 + (n + 1)θ/δ − θ∞/δ)

= (θ − 1/δ)θ(θ∞ − θ)n − (θ − 1/δ)2θ0(θ∞ − θ0)n/(θ0 − 1/δ). (27)

We note that θa
1 is a unique solution of this equation in the interval (θ0, θ∞). Apparently, there are no accurate

formulas for the numbers θa
1 and σ; therefore, the indicated parameters can be found only numerically. Because

the solution of Eq. (27) cannot be found in implicit form, it is difficult to prove the inequality σ > σ0. Generally,
without any constraints on the initial value of θ0, calculations using the Mathematica 5.0 program confirm the
validity of this inequality.

Conclusions. Some sedimentation models taking into account sorption transfer of mass and volume between
the liquid and solid dispersion phases were proposed. The sorption transfer is described by the Langmuir kinetic
equation.

One of the simplest models is a one-dimensional kinematic sedimentation model with equilibrium adsorption,
which is based on a number of assumptions. It is assumed that the Froude number is small; this is characteristic of
slow sedimentation processes. Another assumption is that the sorption process rapidly reaches a stationary regime,
so that the Langmuir equation can be replaced by a stationary isotherm. One more assumption is related to neglect
of the compression of horizontal layers of the solid phase.

The kinematic model was used to study the structure of the concentration wave which describes the upward
extension of the high-concentration zone of the solid phase in the problem of a sedimentation chamber with a
closed bottom. This is done invoking some representative empirical dependences of the interfacial friction factor on
the solid-phase concentration. In terms of the theory of hyperbolic systems, the concentration wave is an upward
traveling shock wave which adjoins a centered rarefaction wave from below and a zone with a lower constant (initial)
solid-phase concentration from above. The concentration-wave velocity is taken to be the shock wave velocity.

An advantage of the simple kinematic model is that it includes only one adsorption parameter Q, whereas
the fuller model contains three kinetic constants. Mathematical investigation of the dependence of the kinematic
model on the parameter Q shows that the concentration wave moves more slowly in the case Q = 0 than in the
case Q > 0. Physically, this is apparently due to the fact that in contrast to neutral particles, the settling sorbent
particles entrap a certain volume of the liquid-phase impurity and the total entrapped volume increases with time.

This work was performed within the framework of Integration Project of the Siberian Division of the Russian
Academy of Sciences (No. 107, 2003) and supported by the Russian Foundation for Basic Research (Grant No. 03-
05-65299).
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